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We address the problem of determining how to reroute aircraft in the air traffic control system
when faced with dynamically changing weather conditions. The overall objective of this prob-
lem is the minimization of delay costs. This problem is of primary concern in the European air
traffic control system and in particular regions within the US air traffic control system. We
present an integrated mathematical programming approach that consists of several methodol-
ogies. To address the high dimensionality, we begin by presenting an aggregate model, in which
the problem is formulated as a dynamic, multicommodity, integer network flow problem with
certain side constraints. Using Lagrangian relaxation, we generate aggregate flows. We decom-
pose the aggregate flows into a collection of flight paths for individual aircraft using a
randomized rounding heuristic. This collection of paths is then used in a packing integer
programming formulation, the solution of which generates feasible and near-optimal routes for
individual flights. The overall Lagrangian Generation Algorithm is used to solve real problems
in the southwestern portion of United States. In computational experiments, the solutions

returned by our algorithm are within 1% of the corresponding lower bounds.

In the United States, the control of air traffic is
centered on 22 regional control centers. These cen-
ters receive information from aircraft and ground-
based radars on location, altitude, and speed of air-
craft, as well as weather information. When the
weather conditions are poor, the capacities of some
airports and sectors in the National Air Space are
forced to drop significantly or even to become zero.
Aircraft must then fly alternative routes if they were
scheduled to pass through airspace regions of re-
duced capacity (see Figure 1 for an example).
Currently, the Air Traffic Command Center
(ATCC) initiates an iterative process with the Air-
line Operations Centers (AOC) to reschedule and
reroute flights so that the delay costs caused by the
weather conditions are kept to a minimum. The
ATCC contacts each airline’s AOC concerning the
necessity of rerouting. Each AOC then determines a
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set of new flight paths that it would like to use to
complete its scheduled flights given the new limited
capacity scenario information. This collaborative de-
cision making approach is based on two central te-
nets as expressed on the website of the Federal
Aviation Administration (FAA). First, better infor-
mation will lead to better decision making and sec-
ond, tools and procedures need to be in place to
enable the ATCC and the National Air Space users
to more easily respond to the changing conditions.
The FAA further states that the attempt to mini-
mize the effects of the reduced capacity requires the
up-to-date information exchange between both the
airline and FAA. The impacts of these collaborative
decision making concepts have been explored by
several authors including ADAMS et al. (1997),
JENNY (1997) and MACDONALD (1998). However,
there is, as yet, no formal optimization model used
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Fig. 1. Alternative routes taken as flights avoid a low capacity region.

at any stage of this collaborative decision making
process.

This paper presents a model that we envision
being used as a tool for addressing the problem faced
by the ATCC and the AOCs of changing conditions,
which we have termed the traffic flow management
rerouting problem (TFMRP). The problem is to de-
termine how to optimally control aircraft by rerout-
ing, delaying, or adjusting the speed of the aircraft
in the air traffic control system to avoid airspace
regions that have reduced capacities, primarily due
to dynamically changing weather conditions. The
overall objective is the minimization of delay costs
that include all applicable fuel costs, safety costs,
and taxes.

The issue of airspace congestion and, conse-
quently, the possibility of rerouting aircraft, is of
considerable concern to the European air traffic con-

trol system. In particular, congestion is found pre-
dominantly in the airspace rather than at the air-
ports. The European Organization for the Safety of
Air Navigation (EUROCONTROL) has projected
that air traffic in Europe will grow by a factor of 1.4
by 2002, and has maintained that safety needs to be
sustained at the current level. Recent studies per-
formed by the EUROCONTROL Experimental Cen-
tre showed that a 5% traffic increase results in a
26% increase in delays. These figures suggest that
alleviating delays caused by airspace congestion is,
and will continue to be, critical to the operation of
the European air traffic control system.

In recent years, there has been considerable re-
search activity concerning the management of air
traffic flow using mathematical programming tech-
niques. Earlier work has focused on (a) controlling
release times of aircraft in the network (ground-
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holding) in a single airport setting (TERRAB and
ODONI, 1991; RICHETTA and ODONI, 1993, 1994), and
in a multiple airport setting, in which delays prop-
agate through the network (TERRAB and PAULOSE,
1993, VRANAS, BERTSIMAS, and ODONI 1994a, b, AN-
DREATTA and TIDONA, 1994, BERTSIMAS and STOCK
PATTERSON, 1998, ANDREATTA and BRUNETTA, 1998,
BRUNETTA, GUASTALLA, and NAVAZIO 1996, and (b)
controlling release times and speed adjustments of
aircraft while airborne for a network of airports
taking into account the capacitated airspace (Bert-
simas and Stock Patterson, 1998; HELME, 1994;
LINDSAY, BOYD, and BURLINGAME, 1993). For a dis-
cussion of the various contributions and a taxonomy
of the various problems, see Bertsimas and Stock
Patterson (1998) and Andreatta and Brunetta
(1998).

The problem of dynamically rerouting aircraft has
not been addressed to the best of our knowledge in
the literature. We propose an integrated mathemat-
ical programming approach that consists of several
methodologies and that determines how to adjust
the release times of flights into the network, control
flight speed once they are airborne, and reroute
flights. To address the high dimensionality, we be-
gin by presenting an aggregate model, in which the
problem is formulated as a dynamic, multicommod-
ity, integer network flow problem with side con-
straints. Using Lagrangian relaxation, we generate
aggregate flows that are decomposed into a collec-
tion of flight paths for individual aircraft using a
randomized rounding heuristic. This collection of
paths is then used in a packing integer program-
ming formulation, the solution of which generates
feasible and near-optimal routes for individual
flights. The overall algorithm, termed the Lagrang-
ian Generation Algorithm, is unique from most
other Lagrangian techniques in that it is combined
with a randomized rounding heuristic. We solve
problems with real data in the southwest region of
the United States in very short computational times
using the Lagrangian Generation Algorithm.

The backbone of our current approach is the dy-
namic network flow formulation. FORD and FULKER-
SON (1958) first introduced a dynamic maximum
flow problem as a standard network generalized to
include traversal times between nodes. For a thor-
ough review of work done on dynamic network flows,
see the survey papers of ARONSON (1989), BOOK-
BINDER and SETHI (1980), and POWELL, JAILLET, and
ODONI (1995). These advances are not directly rele-
vant for our problem because our formulation is both
multicommodity and integer and involves complicat-
ing side constraints.

The paper is structured as follows. In Section 1,

(O =airports
¥¥ = sector crossing points

Fig. 2. A network corresponding to four airports and six sec-
tors.

we formally introduce the TFMRP for a single air-
line and present our formulation as a dynamic, mul-
ticommodity, integer network flow problem with
side constraints. In Section 2, we discuss the multi-
ple airline problem. In Section 3, we describe the
Lagrangian Generation Algorithm. In Section 4, we
report computational results for the TFMRP based
on real data. In Section 5, we include some conclud-
ing remarks.

1. THE DYNAMIC MULTICOMMODITY NETWORK
FLOW FORMULATION

IN THIS SECTION, we present an integer, multicom-
modity dynamic network flow model of the TFMRP
for a single airline. There are several components to
the model. These include the dynamic network, the
aggregated flow variables, the non-aggregated vari-
ables, and the capacity constraints. We will describe
each of these in detail below.

We first describe the dynamic network that mod-
els the air traffic system. We create a graph that
represents the actual geographical picture of the
airport/airspace system. The nodes of the graph rep-
resent both airports and sectors. The example in
Figure 2 of four airports and six sectors demon-
strates how the nodes and arcs of the network are
constructed.

The outlined regions depict the sectors, and the
stars depict the entrance and exit points of the sec-
tors. We define one node for each sector crossing
point. We assume that each sector has a limited
number of entrance and exit points. The circles de-
pict the airports. Each airport is represented by four
nodes as described below. The arcs connect the en-
trance and exit points of a sector as well as the
sector crossing points and airports. Each arc (i, j)
has a corresponding travel time, ¢; ;. To represent
delay in the network, we also include self-loops, i.e.,
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flow out of
airport i

flow into
airport i

Fig. 3. An airport is modeled with four nodes.

arcs that originate and end at the same node, which
have a travel time equal to one.

The commodities in the network are defined as
origin—destination pairs of airports. So, if there are
A airports and flights between all airports are flown,
then there are exactly A(A — 1) commodities. How-
ever, if we wanted to distinguish between certain
characteristics of flights such as airline or aircraft
type, we could do this by breaking the commodities
down even further. We will discuss the multiple
airline problem in Section 2.

To model airport i, we use four nodes iy, ig, i,
and i, (see Figure 3). All the incoming flights to
airport i first land at node i4. Each flight can either
proceed to node iz or to node i. Node iz represents
the situation in which an aircraft has completed all
of its required flights for the time frame under con-
sideration. Consequently, the flow into node i is
removed from the network for the remaining time.
Node i represents the situation in which an arriv-
ing aircraft must perform at least one more flight
during the time frame under consideration. Given
that a commodity of a flight is defined by its origin
and destination, any given incoming flight will nec-
essarily have a different commodity than any outgo-
ing flight at the same airport. Thus, at node i, flow
corresponding to arriving flights of a given commod-
ity is balanced with the flow of departing flights of a
different commodity. The delay arc at node i mod-
els the situation in which an aircraft arrives before
the continued flight is scheduled to depart. Flow
then proceeds from node i to node i;. At node ip,
new aircraft are introduced to the network and all
the flights departing from the airport leave from this
node. The delay arc at this node represents ground
holding of flights.

Let N = (¥, €) be the network formed from air-
ports and sectors, as described above. The set of
commodities is denoted by {1, ..., A(A — 1)},
where A is the number of airports. We discretize the
time horizon into a set of time periods, 7 = {1, ...,

T}. We refer to any particular time period ¢ as the
“time ¢.” Note that by “flight,” we mean a flight leg
between two airports. Throughout this paper we will
refer to “continued” flights. A flight is continued if it
relies on an aircraft that has just completed a pre-
vious flight.

The problem input data are given as follows.

tij = minimum travel time along arc (i, j),

C,(®) = capacity of sector i at time ¢,

r(i) = turnaround time required to refuel, re-
load, and clean an aircraft at airport i,

orig(k) = airport of origin for a commodity %
flight,

dest(k) = airport of destination for a commodity %
flight,

N(k) = set of arcs that a commodity % flight can
use,

F = set of flights,

ds = ;Sheduled departure time of flight f €

c® = cost of holding a flight on the ground for
one unit of time,

c? = average cost of flying an aircraft for one
unit of time,

H = total amount of scheduled flying time
for all flights,

€ = set of flights that are continued,

T, = set of feasible departure times for flight
f where f € €,

k() = commodity of flight f where f € %,

k'(f) = commodity of the flight that precedes

flight f where f € €,

Sup,(¢) = number of flights of commodity & that
are scheduled to depart at time ¢, that
are not continued,

Dem, () = number of flights of commodity % that
are scheduled to land at time ¢, at the
latest, and do not continue to a later
flight this day.

To reduce the dimensionality of the problem, we
aggregate some of the variables over flights. The
aggregated variables are defined as:

x¥/(¢) = number of flights of commodity %
that depart from node i at time ¢
and arrive at node j at time ¢ + ¢;,.

Note that these variables are flow variables and
not flight variables. So, to recommend flight paths,
we must have a method for disaggregating, i.e., for
converting these flow variables to flight variables. In
Section 3.2, we propose a method for performing the
disaggregation through a randomization scheme.
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For continued flights, we also introduce non-ag-
gregated flight variables as

1, if the aircraft performing flight f € €
is ready for departure at time ¢ € T,
0, otherwise.

YAL) =

We use these non-aggregated flight variables to
deal with the transfer of an aircraft from one flight
to another. In particular, these variables are used to
ensure that the necessary transfer of commodities
occurs at the flight level for continued flights. Note
that each continued flight is assigned a unique com-
modity to precede it instead of a unique flight. For
each continued flight, f € €, we know the commod-
ity of flight f, denoted by £(f) and the commodity of
the corresponding flight that will precede it, denoted
k'(f). So, instead of forcing flight f € € to be a
continuation of flight f’, we ensure that, for every
continued flight, there must be aircraft of commod-
ity £'(f) available for flight f € € to use.

Using these non-aggregated variables, we create
the additional constraints that specify that there
must be an aircraft available for each flight f € € at
some time. In other words, y{#) must be equal to 1
for some time in the set of feasible departure times.
There are other methods of ensuring this transfer,
but they involve adding a large number of side con-
straints to the formulation. Whereas, by using these
variables, only |6| additional constraints will be re-
quired. Without these variables and the associated
adjustment to the constraints, continued flights
could depart before their scheduled departure times
and could use any available aircraft to perform the
flight. Note that the set of feasible departure times,
T, for f € 6, begins at the scheduled departure time
for flight f and ends several hours later.

Our model does not explicitly allow flights to be
cancelled. However, if the optimal schedule contains
a flight with a very high delay cost resulting from a
very late departure, a long rerouted flight path or
both, the airline could opt to cancel this flight. At
that point, the schedule could be accepted as is or
the model could be rerun to see if further improve-
ments could be attained by reallocating the re-
sources previously used by the now cancelled flight.

The objective of the TFMRP is to minimize the
total delay cost of flying all the required flights. Any
flight may experience delay resulting from ground
holding, decreasing speed while in the air, and se-
lecting a route that is longer than the scheduled
route. Moreover, a continued flight may also experi-
ence delay if there is no aircraft available for use at
its departure time.

The objective function can be written as

2 b+ X (t—d)yde)
{k, ¢, i=orig(h)} e SPER
+ D et + X ettiph(e) —ctH. (1)
i, 1} {k, 1, G, JEN)}

The first term represents the cost of ground holding
delay. The second term represents the cost of delay
incurred by continued flights that were unable to
depart on time because there were no available air-
craft. The third term represents the cost of air delay
due to speed reduction. The fourth term gives the
total actual cost of all air travel, and the fifth term is
simply a constant representing the total cost of all
scheduled air travel. Note that the cost of delay
caused by rerouting is obtained when the total cost
of all scheduled air travel is subtracted from the
total actual cost of air travel.
The constraints are given below.

TFMRP
2 xﬁ;(t) - 2 xjk',i(t - tj,i) =0,
{:G, )EN(R)} {:0, )EN(R)}

Vied, k, t, (2)

E xﬁiA(t - tj,iA)

{:0, ia)EN(R)}

- x?A,iB(t) - fo,ic(t) = 07

VEk, t, i = dest(k), (3)
af () +xk (¢ — 1) — xk ,(¢) = Demy(¢),

Vk, t, i = dest(k), (4)

E yZ(t) + x?c,ic(t) - x?c,ic(t - 1)
feek=r' (0}
= xf, i (t — r(i) = 0,
VEk, t, i = dest(k), (5)

yf(t) - kaD,iD(t - 1)

E xfn,j(t) - E

{i:p, HENR)} ife@:k=k()}
Vk, t, i = orig(k), (6)

> 2 > xb(t)<Cy), Vi, t, (D
k{6, )ENR)} {t't—t;;<t'<t}

>y ) =1, VfeE, (8)
{teTsh

x¥(t) = 0, integer Vi, j, k, ¢, 9
yAt) €10, 1}, Vf, ¢. (10)
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Constraint 2 represents dynamic flow conserva-
tion for the sectors. There is a constraint for each
sector node, i € ¥, commodity %, and time ¢.

The next four constraints represent flow conser-
vation at each of the airport nodes iy, iz, i, and ip.
Constraint 3 forces flow conservation at node i, of
airport i. At node i4, we sum over all the nodes that
can arrive at airport i from some sector j of commod-
ity £, S(..0enen X5, (¢ = t;;). The time index is
t — t; ;, because this is the time that the flow leaves
J if it is to arrive at i at time ¢. This flow must be
equal to the flow out of node i, at time ¢. This flow
goes to either node iz (where it will be removed from
the network) or to node i (where it will be trans-
ferred to another commodity).

Constraint 4 forces flow conservation at node iz of
airport i. The flow into node i; at time ¢ equals the
flow from node i 4, fo,iB(t), plus any flow that is held
on the ground from the previous time period, xfB,iB(t -
1). This must equal to the flow out, which is Dem,(¢)
plus xfB,iB(t). In other words, if flow arrives at node ig
from node i, prior to the latest time that it is scheduled
to arrive, it lands and then is held on the ground at no
cost until the time that the flow can be removed with
a non-zero value of Dem,(¢). Thus, every aircraft is
removed from the network at its scheduled latest ar-
rival time.

Constraint 5 forces flow conservation at node i.
The flow into this node is of commodity £ and the
flow out of this node is a different commodity. The
flow into node i~ only comes from node i 4, giving the
term, 2 .., gest(h)) fo’iC(t — r(i)), where r(i) is the
turnaround time at airport i. This is the time nec-
essary to refuel and otherwise prepare the aircraft
for the next flight. There is a delay arc at node i,
that captures those aircraft that arrive at airport :
and are cleaned and refueled before they are needed
to fly the next flight. There is no cost for using this
delay arc, it simply represents an aircraft waiting at
an airport for its next flight. Finally, the flow out of
node i is given by 2., YAt). This captures all
the flights that continue from commodity % flights
and that may depart at time ¢.

Constraint 6 forces flow conservation at node ij,.
At this node, all the flow leaving i, to some node j
minus the flow into i, must equal the supply at
airport i at time ¢ for commodity %2 such that i =
orig(k), which is denoted by Sup,(¢). The flow leav-
ing node i, is simply given by 2;.;. henw) fo,j(t).
This summation includes ground holding when j =
ip. The flow into node iy, is either from node i, or
from ground holding in the previous time period. In
the former case, the flow from i, comes from all the
continued flights, which are of commodity £(f) = k.

The ground holding value from the previous time
period is given by fo)iD(t - 1.

Constraint 7 captures the capacity restrictions.
There is a capacity on the number of aircraft that
can be within sector ; at time ¢ given by C;(¢). To
represent this in terms of the flow variables, we
need to sum over all commodities and all arcs that
represent travel in sector i of commodity %4 at time ¢.

Constraint 8 forces every continued flight to de-
part at some time, ¢, within the set of feasible de-
parture times, 7. The remaining two constraint sets
specify that the x¥ ;(t) variables are nonnegative in-
tegers, and that the y(¢) variables are binary.

The above formulation of the TFMRP is a multi-
commodity, integer variation of the minimum cost
dynamic network flow problem. There are some im-
portant differences. First, the capacity constraint 7
is bundled over commodities, arcs, and time periods,
not just over commodities. Second, the disaggre-
gated variables yA{¢), are not flow variables, and
finally there are additional side constraints 8.

2. MODELING THE MULTIPLE AIRLINE PROBLEM

THE MODEL PROPOSED in the previous section can be
used to solve the rerouting problem for a single
airline. However, if we took the viewpoint of the
FAA in which several airlines are occupying the
airspace at the same time, then we need to modify
the formulation slightly. The reason that the multi-
ple airline problem is not the same concerns the
continued flights.

In the formulation of Section 1, we stipulate that
a continued flight does not rely on a unique flight,
rather the formulation guarantees that an aircraft
of the correct commodity will be available before the
continued flight can depart. Once we introduce mul-
tiple airlines, we need to make sure that not only is
the incoming aircraft of the correct commodity, but
also that it belongs to the correct airline. For in-
stance, obviously an American Airlines aircraft
could not continue a Delta Airlines flight.

To do this, we will need to redefine the commodi-
ties such that there is a unique commodity distin-
guished by each origin—destination pair and by each
airline. By redefining the commodities in this man-
ner, we can now ensure that a continued flight will
rely on an aircraft whose commodity corresponds to
the correct airline. This would increase the number
of commodities by a multiple equal to the number of
airlines.

We further need to consider the issue of fairness.
It may be globally optimal to assign all the delay to
a single airline, but of course, this solution is not
acceptable. Thus, we would need to ensure that the
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delay is allocated in a fair manner across the air-
lines. This could be accomplished by modifying the
packing formulation, discussed in Section 3.3, by
adding constraints that guarantee that each airline
receive no more than a given percentage of the total
delay.

3. THE LAGRANGIAN GENERATION ALGORITHM

IN THIS SECTION, we use Lagrangian relaxation of
the formulation TFMRP, randomized rounding, and
a packing formulation to propose near-optimal solu-
tions for the TFMRP. The overall algorithm is out-
lined below. We then explain each step in detail.
The motivation for solving the LP relaxation using
Lagrangian techniques is to quickly obtain many
non-integral solutions which, when used as input to
the randomized rounding heuristic outlined below,
generate a large set of potential flight routes.

The Lagrangian Generation Algorithm

1. Lagrangian relaxation of the LP. Starting
with the formulation of TFMRP, i.e., the problem
of minimizing Eq. 1 subject to the constraints
2-10, we relax the capacity constraints 7 into the
objective function with multipliers, A. We further
relax the integrality constraints in 9 and 10, thus
solving the relaxed problem as a linear program.
Note that the optimal cost of the Lagrangian
problem is equal to the cost of the linear program-
ming relaxation of TFMRP. We initialize the
lower bound by solving the linear programming
relaxation of the formulation for the TFMRP. The
initial upper bound is infinity.

2. Solution of the relaxed problem. We solve the
relaxed problem and obtain a potentially frac-
tional solution y[), xﬁ At).

3. Randomized rounding. We randomly round
the variables y{¢) to zero—one solutions, and ran-
domly decompose the flow into routes for flights.
These routes are then added to a list of paths.

4. Packing formulation. We formulate and solve
an integer packing problem, in which we are at-
tempting to pack the elements of the list of paths
into the capacitated airspace system. If a new
solution is found, we update the upper bound.

5. Stopping criterion. If the upper and lower
bound are within a desired accuracy €, we stop.

6. Update of multipliers. We update the multipli-
ers A and go to Step 2.

In the following subsections, we describe each of
the steps of the algorithm.

3.1 Lagrangian Techniques

During Step 2 of the algorithm, we solve an unca-
pacitated multicommodity dynamic network flow
problem as a linear program. Using the network
flow solver of CPLEX, we solve the problem quickly
(see Section 4). The main motivation of this step is to
generate attractive routes for flights.

We update the multipliers using the iterative ap-
proach of EVERETT (1963) as follows. We represent
the capacity constraints 7 as Ax < b. Let a; be the
Jth row of the matrix A, and let 6; be the right-hand
side value for this row. Let x* be the vector of solu-
tions at iteration k. Let )\J}? be the Lagrange multi-
plier for the jth constraint at iteration %, which is
determined using the following rule.

If ajx*>0b; then A/''=(1+ 8§HAL
If ajx*<b; then A= (1-8)A}.

The parameters SJ’? are updated using the following
rule.

If (aja* —b)(ajx* ' —b) >0, then &' =¢?d.
If (aja* —b)(ajx* ' —b) <0, then &' =¢d".

If (ajx*—b)(ajx*'—b)=0, then &' =5
The values of €, and €, are fixed parameters where
€, >1lande < 1.

The motivation for this method is as follows. If
ajx > b;, then the solution x uses too much of the
available amount of the jth resource; thus, we in-
crease the Lagrange multiplier to penalize the vio-
lation more. In this method, the Lagrange multiplier
would be increased by a factor of (1 + 8;‘). Likewise,
if ajx < b; then the solution x uses a feasible
amount of the jth resource; thus, we decrease the
Lagrange multiplier. It is decreased by the factor
(1 - 8?) as shown above. The amount of increase or
decrease at each iteration is determined by Sj}?,
called the step size, which is controlled at each iter-
ation.

The values of 8J’?‘ are updated in the following
manner. If a constraint is not satisfied iteration
after iteration, then the step size is gradually in-
creased based on the assumption that the value of )\J}?
may still be quite far from its optimal value. If the
constraint fluctuates between feasibility and infea-
sibility, then the step size is reduced substantially
based on the assumption that )\J]? has come close to
its optimal value. It is interesting to note that up-
dating the Lagrange multipliers depends only upon
whether or not the constraint was satisfied, not on
the magnitude of the difference.
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3.2 Randomized Rounding Heuristic

The objective of this step is to generate a rich set
of paths for individual flights from the aggregated
flow solutions. The motivation for using randomiza-
tion is to generate a broader set of solutions. After
completing the Lagrangian relaxation step of the
Lagrangian Generation Algorithm, we have a poten-
tially fractional solution yA#), xf (D).

Basically, this heuristic randomly walks through
the network for every flight looking for a positive
flow path. Starting at the departure airport of flight
f and at the departure time of flight f, the heuristic
randomly picks the next arc that has a positive flow
on it. If this turns out to be a self-loop, then it
remains at the airport for another time period and
then makes another random decision about where to
move in the next time period. Perhaps the next step
places it at a new sector after it has completed the
travel time for that arc. It then, once again, will
randomly pick another arc that has some positive
flow on it. It will walk through the network in this
manner until it reaches its destination. With this in
mind, we will now describe the process in full detail.

We will create a list of paths as follows:

P:{p17 L 7pN}a

where Pi {(Si(O), ti(O)), . (Si(ni)’ ti(ni))}’
where s;(m) is the mth element of path p;, and ¢,(m)
is the time that the flight arrives at s;(m), m =
0,...,n;. Wedefine N as the total number of paths
in the list and n; + 1 as the total number of ele-
ments in path p;.

We select the first element in each path s,(0) in a
deterministic manner. For every noncontinued
flight, we can create a path in which s;(0) is equal to
node i, of the departure airport and ¢,(0) is equal to
the scheduled departure time. For every continued
flight, we select the earliest time such that yA?) is
non-zero, and set this equal to one. Now we can
create a path for each continued flight where s,(0) is
equal to node i, of the departure airport, and ¢,(0) is
equal to the time at which y(¢) is equal to one.

To build the rest of each path, we step through the
network for every flight beginning at the node given
by s,(0) at the time £;(0). We will refer to the com-
modity of our flight as commodity .. Next, we ran-
domly select from all arcs emanating from s;(0) that
have a positive flow value, i.e., xﬁi(o),j(ti(O)) > 0.
This may include the possibility of selecting the arc
that represents ground delay. Let the arc that we
randomly select be denoted by (s;(0), j). We set

s(1)=7 and ¢,(1)=¢t,(0) + ty0,-

We then need to decrease the flow value on the
variable, x'ji(o),j(ti(O)), by one.

We continue in this manner until we reach the
node representing node i 4 of the destination airport.
Because these flows respect the flow conservation
constraints in the Lagrangian relaxation, there will
always be flow out of a node that the heuristic
reaches.

There are a number of ways that we could set the
probabilities used to select paths. Currently, we sim-
ply assign an equal probability to each node that has
a positive flow. The rationale for this is simply to
place a higher probability on obtaining alternative
paths. Another possible method of randomizing
would be to assign each arc a probability based on
the flow on the arc. In particular, we could assign a
probability P; to arc (a, j) defined by

xﬁ,;‘(t)

P,= —
T D edenuy %ey(t)

We could then use these probabilities to determine
which arc to select at each step.

After this heuristic is completed, we have a set of
path and time specifications that are added to a list
of paths and used as input data for the integer
programming packing problem. Note that the heu-
ristic only produces paths that satisfy flow conser-
vation constraints. In particular, the capacity con-
straints 7, and the airport constraints that handle
continued flights 5, may not be satisfied. The path
and time specifications will satisfy constraints 2, 3,
4, 6, 8, 9, and 10. By not forcing these paths to
satisfy all the constraints in TFMRP, we create,
after a few iterations, a list of paths that has more
flexibility. The integer programming packing formu-
lation will then select from this list a combination of
paths that will satisfy all the constraints in
TFMRP.

3.3 The Integer Programming Packing
Formulation

The goal of the packing problem is to pack the
paths generated by the randomized rounding heu-
ristic into the air traffic system, so that all the
necessary flights occur at correct (though not neces-
sarily on time) times, and so that the capacity con-
straints are satisfied.

A path, p, = (5,(0), ¢,(0)), ..., (s;(n,), t;(n,),
specifies the elements and the times of a given route.
The elements are both airports and sectors. Obvi-
ously the first element, s,(0) is the departure airport
and the last element s;(n;) is the arrival airport.
However, ground holding is represented in these
paths. So, if path p; includes g units of ground hold-
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ing, then the elements s;(m), m =0,...,g — 1, all
represent the departure airport, and the times
t;,(m),m =0,...,g — 1, are each separated by one
time unit. Thus, time ¢,(0) is not the actual depar-
ture time, rather it is the time at which an aircraft
becomes available to perform the flight represented
by path p,. If this is a flight that is not continued,
then ¢;(0) will be the same as the scheduled depar-
ture time. If the path represents a flight that is
continued, then ¢,(0) may be later than the sched-
uled departure time, because it is possible that there
was no aircraft available for a continued flight to use
at its departure time.

The decision variables in the packing formulation
are

1, if path/time pair p;
2= is used to fly flight f € %,
0, otherwise.

Let Z be the set of feasible combinations of path/
time pairs and flights.

Z ={(f, ): f€6, pi(0) = orig(k(f)),
pin;) = dest(k(f)), t0) = dg
UA(F, 0): f e F\E, pi(0) = orig(k(f)),
pi(n;) = dest(k(f)), t,(0) = dg.

The objective of the packing problem is to mini-
mize the cost of delay in the air and the ground
holding cost of departing after the scheduled depar-
ture time. Let g once again be the number of ground
holding units associated with path p;. Then, the
delay cost of path p; is given by

c;=ct(n,) —t(g)] +c¥t(g — 1) —t,(0)],

which includes both the amount of time spent
ground holding and flying.
The objective function is as follows:

N

C; E 2fi

=1 {f(fiez

N
+cf z tl(O) z 2fi z df — c*H.
i=1 {f(f ez} {res}

The first term captures the cost resulting from
ground holding delay and from air travel. When
combined with the final term, which is a fixed cost of
scheduled air travel, we capture the cost of delay
resulting from ground holding, decreasing speed
while in the air, and selecting a route that is longer
than the scheduled route. The only remaining delay

occurs if there is no aircraft available for a continued
flight to use at its departure time. To capture this
delay, we sum over all the times at which aircraft
become available to perform the flight represented
by path p; and subtract the sum of all the scheduled
departure times.

The constraint set is given by the following equa-
tions.

PP

Zﬁi = Cj(t) )
{(f, i)EZ: Im|j=si(m),
tilm)<t<ti(m+1)}

vied,t, (11)

> zn=1, VfEF, (12)
(i, DeZ)
Zf,i = E Zf/,i/y Vk, t’
{(f, HEZ:fE¢, {F,I")EZE( )=k,
k' (H=k, t:(0)<t} tir (nir) +r(s i'(niv)) <t}
(13)
z;;€{0,1}, Vi=1,...,N.

Constraints 11 represent the capacity constraints.
They stipulate that, for every sector j and every time
t, the sum over all the flights that are in this sector
at time ¢ must be less than or equal to the sector
capacity. A flight is within a sector at time ¢ if it
entered the sector before time ¢, ¢;(m) < ¢, and has
not yet entered the next sector in its path before
time ¢, t < t;(m + 1). Constraints 12 ensure that
each flight will be assigned to exactly one route.
Constraints 13 guarantee that a continued flight
will not depart before a suitable aircraft has arrived
for it to use. The left-hand side of constraints 13
represents the number of continued flights whose
preceding flight is of commodity %, £'(f) = k, and
whose possible departure time is less than or equal
to ¢. This number must be less than the number of
flights of commodity %, k(f') = k, that arrive before
time ¢ minus the turnaround time, r(s;,(n;,)). The
final constraint set simply forces these variables to
be binary.

4. COMPUTATIONAL RESULTS FOR THE
LAGRANGIAN GENERATION ALGORITHM

IN THIS SECTION, we report on the computational
performance of the Lagrangian Generation Algo-
rithm. In Sections 4.1, 4.2, and 4.3, the Lagrangian
Generation Algorithm is applied to solve three in-
stances of the air traffic flow management rerouting
problem. These instances model different weather
fronts passing through a portion of southwestern
United States. This region consists of four airports,
located at Denver (DEN), Phoenix (PHX), Las Vegas
(LAS), and Salt Lake City (SLC). There are 42 sec-
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Fig. 4. Sector map of the US with southwest region shown.

tors that lie in the vicinity of these four airports as
shown in Figure 4. This data, provided by the FAA,
includes the travel times for the sectors and the
necessary turnaround times. Each of the three in-
stances has a different capacity scenario determined
by the movement of a weather front through the
region. All of the computation were performed on a
Sun Sparc 20 workstation with 48MB.

4.1 Computations for Weather Scenario 1

For this instance, flight schedules for 71 flights
among the four airports shown in Figure 4 are ex-
tracted from a dataset provided by the FAA that
covers an 8-hour time frame with 5-minute time
intervals. We simulated a weather front passing
from the northeast corner of this region to the south-
west corner. The sector capacities were generated
probabilistically according to a uniform distribution.

During normal weather conditions, the sector ca-
pacities were generated using a uniform distribution
with a mean determined by the size of the sector and
a standard deviation of one. Figure 5 shows the
sector capacities during normal weather conditions.
At the cusp of the storm, the capacities were gener-
ated using a uniform distribution with a mean of
zero. All of the resulting negative values were set to
zero. As the weather front gradually passes through,
the mean slowly increases up to the mean for normal
weather conditions. Figure 6 shows the different
weather scenarios that evolve over time for this ca-
pacity scenario as the weather front passes through
the region. The shaded areas show the cusp of
weather front with the numbers corresponding to
sector capacities.

To achieve a lower bound on the solution, we solve
the LP relaxation of the multicommodity dynamic
network formulation, which consists of 24,509 con-
straints and 61,912 variables. Finding a solution to

Fig. 5. Weather Scenario I at 8 A.M. representing normal
operating conditions before the weather front has hit this region.

the LP requires 181 seconds. The solution is highly
non-integral with an objective value of 2498.5.

We ran the Lagrangian Generation Algorithm set-
ting the parameter values as ¢; = 2 and e, = 0.33.
The starting values for )\JQ and 8}’ were set to 10 and
0.8, respectively. We did not perform extensive trials
to determine the best starting values for A and 8§,
however, a few different settings were tried. The
results presented reflect the stated starting condi-
tions, which converged in the shortest number of
iterations. The Lagrangian relaxation solves a net-
work problem with 15,279 nodes, 54,427 arcs and 26
of the side constraints 8. The size of the integer
programming packing problem grows at each itera-
tion as the size of the list of paths increases. At the
final iteration, the formulation consists of 2209 con-
straints and 145 variables, which reduces to 424
constraints and 125 variables by using some pre-
solving routines in CPLEX. Table I tracks the per-
formance of the Lagrangian Generation Algorithm
as it steps through the algorithm.

The total amount of time needed to solve this
problem, including the subproblem times for the
Lagrangian relaxation and the integer program-
ming packing problem given in Table I, was 330
seconds. The solution value found, 2509, is within
0.4% of the lower bound. The total delay associated
with this solution is composed of 810 minutes of
ground delay, 15 minutes of airholding delay, 200
minutes of rerouting delay, and 215 minutes of delay
caused by late incoming aircraft for continued
flights.

Numerous routes were used for each particular
commodity. As an example, we will consider one of
these commodities, Las Vegas to Phoenix, in detail.
Three different routes were used over the course of
the day to fly flights of this commodity. Two routes
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Fig. 6. Weather Scenario I at: (a) 9:45 A.M. (b) 10:35 A.M. (¢) 11:25 A M. (d) 12:15 P.M.

are shown and labeled in Figure 7. Most of the time
when this commodity is flown, route 1 is used and
ground delay alone is assigned to avoid any antici-
pated capacity problems while in the air. However,
we will examine two flights that use route 2. The
important times for these two flights are depicted in
Figure 8 and explained below.

TABLE I
Computational Results for Weather Scenario 1
Lagrangian Packing
Objective Number Presolve 1P Objective

Iteration Time Value Infeasible Time Time Value
0 25.01 —113062 89 0.03 - Inf.
1 24.22 —12572 65 0.03 - Inf.
2 2470 1321.46 77 0.07 - Inf.
3 2442 2073.94 54 0.12 - Inf.
4 24.58 2248.13 64 0.18 - Inf.
5 24.40 2324.27 68 0.18 - Inf.
6 24.65 2286.42 61 0.18 - Inf.
7 24.67 2377.25 66 0.18 15.26 2509

All times in seconds.

At 11:50 A.M. a flight is scheduled to depart from
Las Vegas. This flight is scheduled to arrive at Phoe-
nix one hour later. The flight is held on the ground
for 45 minutes and actually departs at 12:35 P.M. It
reaches Phoenix at 2:10 P.M. making the total
amount of time spent traveling equal to 1 hour and

Fig. 7. Two routes used at different times to fly from Las Vegas
to Phoenix.
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Fig. 8. Time lines of two flights that use route 2 on Figure 7.

35 minutes, which is 35 minutes more than sched-
uled. The total delay of 80 minutes resulted from 45
minutes of ground holding, and 35 minutes of re-
routing delay.

At 11:20 A.M., a continued flight is scheduled to
depart from Las Vegas. It is relying on an aircraft
that is scheduled to arrive at Las Vegas at 11:00
A.M. However, this incoming flight experiences de-
lay and does not arrive at Las Vegas until 11:25
A M. The aircraft is immediately refueled and
boarded, and the continued flight actually departs at
time 11:35 A.M., 15 minutes after the scheduled
departure time. There is no ground holding assigned
to this flight. The flight travels along route 2 and is
further delayed in terms of airspeed reduction.
When the flight reaches the shaded sector in Figure
7, its speed is reduced such that the travel time
through this sector is increased by 10 minutes. It
reaches Phoenix at 1:20 P.M., a total of 1 hour after
the scheduled arrival time. This total delay of 60
minutes resulted from 10 minutes of airspeed reduc-
tion, 35 minutes of rerouting delay, and 15 minutes
of departure delay due to the late incoming aircraft.

4.2 Computations for Weather Scenario II

For this instance, the same flight schedules for the
71 flights between the 4 airports shown in Figure 4
were used. However, to simulate the weather front
passing from the northeast corner of this region to
the southwest corner, the sector capacities were set
deterministically.

During normal weather conditions, we fixed the
capacities according to the size of the sector. At the
cusp of the storm, the sector capacities were set to
zero. One hour later, as the storm front moves along,
those sectors that had zero capacity during the last
hour, now have a slightly increased capacity of one.
The sector capacities would continue to increase

hourly until they have resumed the level of normal
weather conditions. Figure 9 shows the different
sector capacities that evolve over time for the second
capacity scenario as the weather front passes
through the region. Figures 9a through f show the
sector capacities between the times 8:20 to 9:20
AM., 9:25 to 10:25 A.M., 10:30 to 11:30 A.M., 11:35
A.M. to 12:35 P.M., 12:40 to 1:40 P.M., and 1:45 to
2:45 P.M., respectively. The shaded areas show the
cusp of the weather front where the sector capacities
are zero. The front moves along gradually, spending
one hour before each progression.

To achieve a lower bound on the solution, we solve
the LP relaxation of the multicommodity dynamic
network formulation. The size of the formulation is
not affected by the change in the weather capacity
scenario. Thus, the number of constraints and vari-
ables is the same as specified for weather scenario I.
Solving the LP requires 59 seconds and gives a so-
lution that is highly non-integral with an objective
value of 2387.

We ran the Lagrangian Generation Algorithm set-
ting the parameter values as ¢; = 2 and e, = 0.33.
The starting values for )\J(-’ and 8;-’ were set to 10 and
0.8, respectively. Table II tracks the performance of
the Lagrangian Generation Algorithm as it steps
through the algorithm. The problem sizes are the
same as for weather scenario 1.

Solving this problem took 116 seconds, which in-
cludes the subproblem times for the Lagrangian re-
laxation and the integer programming packing prob-
lem given in Table II. The solution value found,
2418, is within 1.2% of the lower bound. The total
delay associated with this solution is composed of
495 minutes of ground delay, no airholding delay,
225 minutes of rerouting delay, and 55 minutes of
delay caused by late incoming aircraft for continued
flights.

We ran the algorithm for 100 iterations, without
the e stopping condition, to see if we could find a
solution that is even better than the one found
above. The results from the first 15 iterations are
given in the Table III. The remaining 85 iterations
did not find a solution with a lower solution value
less than the value at the fifteenth iteration, and
were thus not including in the table. Within 7 iter-
ations we generate the best solution that we were
able to find. This value is 2389, which is within
0.08% of the lower bound of 2387.

Numerous routes were used for each particular
commodity. In Figure 10, we look at a few of the
routes used to fly between Phoenix and Salt Lake
City. Route 1 travels from Salt Lake City heading
toward Phoenix. This flight is scheduled to depart at
9:30 A.M., but is held on the ground until 11:30
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(b)

Fig. 9. Weather Scenario II: (a) 8:20-9:20 A.M., (b) 9:25-10:25 A.M., (¢) 10:30-11:30 A.M., (d) 11:35 A.M.-12:35 P.M., (e) 12:40-1:40

P.M., (f) 1:45-2:45 P.M.

A.M.,, incurring a 2-hour ground delay. At that point,
the flight departs from Salt Lake City and follows a
reasonably direct route, route 1, to Phoenix, basi-
cally trailing the storm front.

Routes 2 and 3 go north from Phoenix to Salt Lake
City. The flight that travels along route 2 is sched-

uled to depart at 9:25 A.M., but is held on the ground
for 1 hour. It then departs and follows a circuitous
route due to the limited sector capacities. The flight
that travels along route 3 is scheduled to depart at
11:30 A.M. and only suffers a 20-minute ground
delay. This flight passes through its route immedi-
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TABLE II
Computational Results for Weather Scenario II
Lagrangian Packing
Objective Number Presolve 1P Objective
Iteration Time Time Infeasible Time Time Time
0 24.72 —107072 72 0.12 - Inf.
1 24.63 —11148 60 0.10 - Inf.
2 24.72 1618.38 20 042 17.51 2418

All times in seconds.

ately after the weather front. The capacities are still
quite limited, however, forcing this flight to signifi-
cantly deviate from the shortest path. To appreciate
how this affects travel time, we note that route 1
requires 1 hour and 55 minutes of flying time, route
2 requires 2 hours and 25 minutes of flying time, and
route 3 requires 2 hours and 35 minutes of flying
time.

TABLE III
Computational Results for Weather Scenario II for 15 Iterations
Lagrangian Packing
Objective Number Presolve 1P Objective

Iteration Time Value Infeasible Time Time Value
0 24.72 —107072 72 0.12 - Inf.

1 24.63 —11148 60 0.10 - Inf.

2 24.72 1618.38 20 042 17.51 2418

3 26.18 2104.20 25 048 17.42 2408

4 2598 2231.75 32 0.53 18.02 2396

5 2598 2295.00 18 053 19.10 2393

6 25.98 2317.74 19 0.57 19.35 2392

7 25.43 2345.69 21 0.62 18.46 2389

8 25.88 2327.27 21 0.65 19.56 2389

9 25.82 2360.46 22 0.65 19.89 2389

10 25.88 2304.59 22 0.68  19.99 2389
11 25.78 236744 10 0.72  20.03 2389
12 26.55 2375.27 12 0.68 20.36 2389
13 25.93 2378.53 14 0.72 21.58 2389
14 26.45 2379.18 21 0.67 21.60 2389

All times in seconds.

Fig. 10. Three routes used to fly between Salt Lake City and
Phoenix.

4.3 Computations for Weather Scenario III

For the third weather scenario that we tested, we
increased the number of flights to 200 and scaled
sector capacities during normal weather accord-
ingly. To simulate the weather front passing from
the northeast to the southwest corner, we set the
sector capacities deterministically.

During normal weather conditions, we fixed the
sector capacities according to the size of the sector.
At the cusp of the storm, the sector capacities were
set to zero. The front once again gradually moves
along spending forty minutes, before each progres-
sion. As the cusp of the storm front moves through
the region, the available sector capacity increases by
two each forty minutes. So this weather front moves
more quickly and does not leave such bad conditions
behind it, as does the previous weather scenarios.
Had we kept the capacity levels at that of either of
the two previous scenarios, then the problem would
have been infeasible, meaning that there would
have been no way to complete all of the 200 flights
during the time frame without cancelling some
flights. Figure 11 shows the different weather sce-
narios that evolve over time for the third capacity
scenario as the weather front passes through the re-
gion. The shaded areas show the cusp of the weather
front in which the sector capacities are set to zero.

To achieve a lower bound on the solution, we solve
the LP relaxation of the multicommodity dynamic
network formulation, which consists of 25,881 con-
straints and 66,489 variables. Solving the LP re-
quires 86 seconds and gives a solution that is highly
non-integral with an objective value of 6513.5.

We again ran the Lagrangian Generation Algo-
rithm with the same starting values as before. Table
IV tracks the performance of the Lagrangian Gen-
eration Algorithm as it steps through the algorithm.
The Lagrangian relaxation solves a network prob-
lem with 16,219 nodes, 57,294 arcs, and 138 of the
side constraints 8. The size of the integer program-
ming packing problem grows at each iteration as the
size of the list of paths increases. At the final itera-
tion, the formulation consists of 2394 constraints
and 1197 variables, which reduces to 879 con-
straints and 1078 variables by using some presolv-
ing routines in CPLEX.

Solving this problem took 169 seconds, which in-
cludes the subproblem times for the Lagrangian re-
laxation and the integer programming packing prob-
lem given in Table IV. The solution value found,
6574, is within 0.92% of the lower bound. The total
delay associated with this solution is composed of
670 minutes of ground delay, no airholding delay,
290 minutes of rerouting delay and 370 minutes of
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Fig. 11. Weather Scenario III for 200 flights: (a) 8:20-9:00 A.M., () 9:05-9:45 A.M., (¢) 9:50-10:30 A.M., (d) 10:35-11:15 A.M., (e)

11:20 A.M.-12:00 P.M., (/) 12:05-12:45 P.M.

delay caused by late incoming aircraft for continued
flights.

Once again, we ran this problem for more itera-
tions to see if we could obtain a better solution, even
though we already found a solution that is well
within the tolerance. Table V gives results that show
all the solutions that we generated. Of these, the

best solution, 6520, is within 0.09% of the lower
bound, 6513.5.

5. CONCLUSIONS

THE AIR TRAFFIC Flow Management Rerouting
Problem determines how to reroute flights through
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TABLE IV
Computational Results for 200 Flight Dataset
Lagrangian Packing
Objective Number Presolve 1P Objective
Iteration Time Value Infeasible Time Time Value
0 36.52 —283953 91 0.19 - Inf.
1 36.49 —26652 54 0.26 - Inf.
2 36.31 5772.76 39 0.81 - Inf.
3 36.56 6152.06 44 0.83 18.11 6574

All times in seconds.

different flight paths to reach their destinations if
the current routes pass through a region that is
unusable as a result of poor weather conditions. This
is the first research that has taken a global look at
rerouting. Our approach determines the best routes
for the aircraft to follow, as well as the amount of
ground holding and the amount of speed adjust-
ment, while taking into consideration that the entire
national airspace system is operating under capac-
ity restrictions. We modeled the problem as a dy-
namic network flow formulation with additional
constraints and presented an integrated mathemat-
ical programming approach utilizing several meth-
odologies. The computational results suggest that
this approach is capable of efficiently solving real
problems for a portion of the national airspace sys-
tem.

In the course of this research, we obtained some
general insights that may have wider applicability.
The algorithmic design of the Lagrangian Genera-
tion Algorithm could be used in other problem con-
texts. The idea of extracting solutions using random-
ization and combining these solutions using integer
programming may be useful in other problems as
well. Although we have presented our formulations
in the context of air traffic control, we envision other

TABLE V
Computational Results for 200-Flight Dataset for 12 Iterations
Lagrangian Packing
Objective Number Presolve P Objective
Iteration Time Value Infeasible Time Time Value
0 36.10 —283953 91 0.19 - Inf.
1 36.16 —26652 54 0.26 - Inf.
2 36.14 5772.76 39 0.81 - Inf.
3 36.26 6152.06 44 0.83 18.11 6574
4 36.08 6291.80 42 092 18.78 6545
5 36.03 6327.60 39 094 18.63 6529
6 35.97 6307.54 42 1.00 19.00 6527
7 35.83 6370.08 37 1.04 19.12 6523
8 36.51 6453.82 36 1.08 19.58 6520
9 36.26 6458.95 47 1.09 19.64 6520
10 35.90 6319.08 41 1.10 20.01 6520
11 36.22 6380.18 36 1.10 20.82 6520

All times given in seconds.

applications of our models in any area in which
goods are dynamically flowing through a system
with several types of capacitated elements such as
manufacturing, telecommunications, and ground
transportation systems.
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